This function displays plots related to predictive accuracy functions:
epoce
and Diffepoce
.
Arguments
- x
an object inheriting from classes
epoce
orDiffepoce
- ...
other parameters to be passed through to plotting functions
Details
These functions do not apply for the moment with multiple causes of event (competing risks).
For epoce
objects, the function displays the EPOCE estimate (either
MPOL or CVPOL) according to the time of prediction. For Diffepoce
objects, plot
displays the difference in EPOCE estimates (either MPOL
or CVPOL) and its 95% tracking interval between two joint latent class
models
Examples
# \dontrun{
# estimation of the joint latent class model
m3 <- Jointlcmm(fixed= Ydep1~Time*X1,mixture=~Time,random=~Time,
classmb=~X3,subject='ID',survival = Surv(Tevent,Event)~X1+mixture(X2),
hazard="3-quant-splines",hazardtype="PH",ng=3,data=data_lcmm,
B=c(0.7667, 0.4020, -0.8243, -0.2726, 0.0000, 0.0000, 0.0000, 0.3020,
-0.6212, 2.6247, 5.3139, -0.0255, 1.3595, 0.8172, -11.6867, 10.1668,
10.2355, 11.5137, -2.6209, -0.4328, -0.6062, 1.4718, -0.0378, 0.8505,
0.0366, 0.2634, 1.4981))
# predictive accuracy of the model evaluated with EPOCE
VecTime <- c(1,3,5,7,9,11,13,15)
cvpl <- epoce(m3,var.time="Time",pred.times=VecTime)
#> Be patient, epoce function is running ...
#> The program took 0.93 seconds
summary(cvpl)
#> Expected Prognostic Observed Cross-Entropy (EPOCE) of the joint latent class model:
#>
#> Jointlcmm(fixed = Ydep1 ~ Time * X1, mixture = ~Time, random = ~Time,
#> subject = "ID", classmb = ~X3, ng = 3, survival = Surv(Tevent,
#> Event) ~ X1 + mixture(X2), hazard = "3-quant-splines",
#> hazardtype = "PH", data = data_lcmm)
#>
#> EPOCE estimators on data used for estimation:
#> Mean Prognostic Observed Log-likelihood (MPOL)
#> and Cross-validated Prognostic Observed Log-likelihood (CVPOL)
#> (CVPOL is the bias-corrected MPOL obtained by approximated cross-validation)
#>
#> pred. times N at risk N events MPOL CVPOL
#> 1 300 150 1.783568 1.820909
#> 3 299 150 1.826218 1.863911
#> 5 291 149 2.017346 2.053467
#> 7 258 127 1.815015 1.834995
#> 9 205 107 1.883315 1.904648
#> 11 158 81 1.712072 1.736993
#> 13 129 68 1.779851 1.784635
#> 15 99 49 1.492382 1.499277
#>
plot(cvpl,bty="l",ylim=c(0,2))
# }